
Hierarchical Planning Architectures for Mobile Manipulation Tasks in
Indoor Environments

Ross A. Knepper Siddhartha S. Srinivasa Matthew T. Mason

Abstract— This paper describes a hierarchical planner de-
ployed on a mobile manipulation system. The main idea is a
two-level hierarchy combining a global planner which provides
rough guidance to a local planner. We place a premium on
fast response, so the global planner achieves speed by using
a very rough approximation of the robot kinematics, and the
local planner begins execution of the next action even without
considering subsequent actions in detail, instead relying on the
guidance of the global planner. The system exhibits few plan-
ning delays, and yet is surprisingly effective at planning collision
free motions. The system is deployed on HERB [20], combining
a Segway mobile platform, a WAM arm, and a Barrett hand.
The navigation and manipulation components have been tested
on the real robot, and the task of simultaneously approaching
and grasping a bottle on a countertop was demonstrated in
simulation.

I. INTRODUCTION

We propose to bring indoors a planning architecture that
has previously been applied to outdoor mobile robots. Hi-
erarchical planners employ two or more sub-planners that
lie on the spectrum from short-range and high-fidelity (local
planner) to long-range and low fidelity (global planner).
By combining diverse planners, we may take advantage of
sensor information at short range to plan detailed trajectories
for obstacle avoidance without spending undue computation
planning in far away parts of the environment, about which
little may be known.

Hierarchical planners afford a number of advantages. The
local planner replans frequently, meaning that it is reactive
to an unpredictably changing environment. After each replan
step completes, the local planner issues a command to the
robot for execution during the subsequent planning cycle.
Therefore, one observes a minimal amount of lag before the
robot starts moving. Finally, the division of labor allows the
planner to find paths over great distances and also generate
detailed paths which avoid obstacles.

Few planners offer this combination of features. The
RRT [15] planner is often highly effective in practice (espe-
cially in clutter), however it cannot easily react to a changing
environment. By contrast, potential field planners [11] are
highly reactive, but they can easily become stuck in cul-de-
sacs since they lack global guidance or lookahead capability.

A mature robotic platform, HERB (Fig. 1), hosts our plan-
ner implementations. HERB comprises a WAM arm mounted

R. A. Knepper and M. T. Mason are with The Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA - 15213,
USA. rak@ri.cmu.edu, mason@cs.cmu.edu

S. S. Srinivasa is with Intel Labs Pittsburgh, 4720
Forbes Ave., Suite 410, Pittsburgh, PA - 15213, USA.
siddhartha.srinivasa@intel.com

Fig. 1. HERB is a mobile manipulation platform comprising a WAM arm
and Segway base. We demonstrate a solution, based on the hierarchical
planning framework, for simultaneously driving toward and reaching for
objects. Here we depict such an example task, both in simulation, and on
the real robot.

on a differential drive Segway RMP base. HERB localizes
itself in real time during navigation with less than 5 cm
of error. During manipulation tasks, on-board perception
systems localize obstacles and target objects relative to the
robot within 1 cm, thus ensuring collision-free trajectories.

We have implemented a pair of hierarchical planners on
HERB. A 2D planner handles navigation for the Segway
base, while a 3D arm planner performs manipulation tasks.
These two planners, in turn, form a combined mobile ma-
nipulation planner, in which the 2D planner generates a
trajectory for the Segway, which acts as global guidance.
Due to the limited reach of the arm, the 3D planner considers
shorter distances and acts as a local planner. It receives a
predicted trajectory from the Segway planner and generates
a path which reacts to its predicted motion. We demonstrate
this combined functionality in simulation.

We believe that mobile manipulation is an ideal application
for hierarchical planning because of the variation in level
of detail. Before manipulating a faraway object, we must
initially focus on driving the mobile base. As the target object

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Hierarchical Planning Architectures for Mobile Manipulation Tasks in
Indoor Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,The Robotics Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), 3-8
May, Anchorage, AK. U.S. Government or Federal Rights License

14. ABSTRACT
This paper describes a hierarchical planner deployed on a mobile manipulation system. The main idea is a
two-level hierarchy combining a global planner which provides rough guidance to a local planner. We
place a premium on fast response, so the global planner achieves speed by using a very rough
approximation of the robot kinematics, and the local planner begins execution of the next action even
without considering subsequent actions in detail, instead relying on the guidance of the global planner. The
system exhibits few planning delays, and yet is surprisingly effective at planning collision free motions. The
system is deployed on HERB [20], combining a Segway mobile platform, a WAM arm, and a Barrett hand.
The navigation and manipulation components have been tested on the real robot, and the task of
simultaneously approaching and grasping a bottle on a countertop was demonstrated in simulation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

gets closer, the configuration of the manipulator arm becomes
increasingly important, and more time should therefore be
devoted to arm planning in the final stage of the operation.
With our hierarchical planning architecture, we demonstrate
mobile manipulation planning that is spontaneous, effective,
and reactive to the environment during execution.

A. Motivation

The hierarchical planning architecture we employ here is
designed not for eventual success in the worst-case but for
rapid success in the majority of cases. The plans generated
by this planner begin running on the robot with minimal
planning delay and succeed in reaching the goal under
normal circumstances.

In conducting this work, we sought to build a planner
possessing a degree of greediness, which can generate goal-
directed behavior that is both fast and subjectively “good
enough”. By simultaneously employing a degree of looka-
head via trajectories in the local planner, this planner may
avoid getting stuck in any but the deepest cul-de-sacs in the
potential field.

B. Prior Work

The history of hierarchical planners on outdoor fielded
navigation systems begins with ALV [5], in which a map-
ping layer planner provides waypoint guidance for cross-
country navigation. The waypoints guide a low-level planner
operating in several modes and incorporates several sampled
trajectories to select safe vehicle commands.

The design of this early system inspired another outdoor
planning architecture in PerceptOR [10], which employs
a low-fidelity global planner based on Field D* [8] to
give global guidance to a local planner. This local planner
evaluates candidate trajectories, generated by sending sam-
pled constant-input controls through a vehicle model. These
trajectories terminate at various points in the workspace. All
collision-free paths are permissible because D* provides a
navigation function, thus giving the route from any point to
the goal. The local replan rate is roughly 10 Hz.

Two of PerceptOR’s successors, Crusher and Boss [9], em-
ploy hierarchical planners in different environments. Crusher
concentrates on off-road driving, while Boss, the winner of
the 2007 DARPA Urban Grand Challenge, navigates roads.
A variety of other Urban Challenge teams also explored the
use of hierarchical planners to varying degrees (see [13] for
a survey of Urban Challenge local planning solutions).

The Argo platform [1] implements a separate heritage
of off-road hierarchical planners. While PerceptOR and its
kin generate a global navigation function which can be
queried from any point, Argo’s global planner offers a single
path for the local planner to track. Thus, only local paths
which terminate on the global path can be considered. In
the present work, the separate navigation and arm planners
employ the PerceptOR paradigm, while the combined mobile
manipulation planner operates similarly to Argo.

A twist on the hierarchical planning concept, presented in
[17] for planetary rovers, combines search spaces of varying

fidelity and scalability into a unified graph. This planner
performs comparably to many hierarchical planners with a
single D* query at the expense of additional bookkeeping to
manage the world-fixed search graph as the rover traverses
its environment.

Another body of work relates to hierarchical planning for
indoor navigation. Candido [4] discusses the application of
hierarchical planning to humanoids. Since the high degrees of
freedom make exhaustive C-Space planning impractical, this
work instead employs a look-up table of feasible motions,
called motion primitives, which generate useful behaviors
when applied to a terrain. Candido builds a graph of motion
primitives, which explore the terrain.

Yang [22] implements a hierarchical planner loosely re-
sembling our architecture. The global planner generates
a probabilistic road map with movable nodes to handle
dynamic environments. The objective is to maintain an
approximation of the changing topology of the environment
within this graph. During execution, a potential field local
planner follows these graph edges.

The indoor hierarchical planning architecture most closely
resembling our own is reported by Wang [21]. In this work,
a global planner computes the shortest path in a grid from
start to goal. A local planner then tries to follow this path
by defining a sub-goal where a circle centered at the current
robot position intersects the target path. Potential fields drive
the robot toward its sub-goal, thus performing receding
horizon control until the robot reaches the final goal.

Handey [16] is a fully integrated system capable of recog-
nizing and manipulating polyhedral parts in clutter. Handey’s
motion planner is composed of a two-layer hierarchy of
a coarse-grained kinematic arm planner and a fine-grained
hand controller for executing planned compliant grasping.
The intuition for the hierarchy is that while the arm had
to merely avoid obstacles, the hand had to reach into tight
spaces, make deliberate contact with obstacles, and perform
fine manipulation.

Finally, [12] performs some analysis of hierarchical plan-
ning for navigation in a theoretical and simulation study.

II. HIERARCHICAL PLANNING

The planners described in this work come from a her-
itage of planners deployed in the context of outdoor rough-
terrain navigation. Vehicle safety requires a high-fidelity
vehicle model capable of predicting the vehicle’s response to
candidate actions over the upcoming ground shape. Model
predictive planning and control utilize such a vehicle model
to select and steer the best trajectory. Each is typically
executed in a loop. In our system, the local planner replans
at 5 Hz, while the controller loops more rapidly at 37.5 Hz.

Model predictive planners are somewhat costly to execute
since they are limited by the speed of the accompanying
vehicle model. A rapid replan rate is important to ensure the
most up-to-date sensor data for the upcoming ground patch,
and replanning also provides the robot an ability to react
to dynamic obstacles in real time. Together, a rapid replan
rate and a costly model constrain the amount of available

computation during each replan cycle, which has the effect
of bounding the horizon of local planning.

To compensate for this horizon, we typically employ one
or more higher level planners that make different tradeoffs. In
general, an entire spectrum of planners may be employed in a
hierarchy, where the largest scale may involve no more than
a heuristic distance estimate. Each successively lower level
plans to a shorter horizon while more accurately representing
actual vehicle motions.

In this work, we restricted the hierarchy to two levels.
At the global level, we run D* Lite [14]. We discretize the
workspace into a rectangular grid and run the D* search
algorithm to rapidly find the cost of a path from any point
in the workspace to the nearest goal position. In searching
a grid, we trade off guaranteed trajectory feasibility for
computational speed. D* offers additional advantages over
other graph search algorithms such as reuse of previously
generated results and the ability to alter cell costs due to
dynamic obstacles without the need to plan from scratch.

At the local level, the planner generates a set of paths
which are feasible to execute on the target system. Given
paths τ each parametrized as τ : [0, 1]→ Q, these paths are
scored with a heuristic cost function of the form

cτ (τ) = cgp(x(τ(1))) + clp(τ) + αT f(τ), (1)

where q is a robot configuration, x(q) is the corresponding
workspace coordinate, f(q) is a vector of features on the
robot configuration, and α is a vector of feature weights,
which may be hand-tuned or learned using a technique
like logistic regression. The global and local path costs are
represented by cgp(x) and clp(τ), respectively.

In the remainder of this paper, we discuss two indoor
applications for the hierarchical planner. In Section III, we
address indoor navigation of a Segway RMP based robot in
an office environment. In Section IV, we extend the approach
to planning for the Barrett WAM arm. Taken together, these
planners represent steps toward a unified hierarchical model
predictive mobile manipulation suite.

III. 2D NAVIGATION PLANNER
In designing a navigation system for HERB’s Segway

base, we utilized ROS [18]. Just as with the architecture
described above, we divided the navigation planner into
local and global planners with a heuristic function arbitrating
between them. The navigation planner is based heavily on
the planner described in [12]. The local planner generates a
set of polynomial-parametrized curves in action space with
a six-second lookahead.

After selecting the best path at each cycle, the planner
passes the corresponding command to the robot for open-
loop execution. We produced a high-fidelity dynamic model
of the Segway based on data collected from HERB driving.
We use this model to predict the trajectory resulting from
a given control. The predictive model of the Segway is
sufficiently accurate as to introduce negligible error over
the course of a fraction of a second between commands.
Consequently, we do not require a path-following controller.

Fig. 2. Navigation planner view showing local candidate curves in blue
and the straighter global D* path (in red) connecting the best local path to
the goal (red diamond). Obstacles are in black.

A. Local Planner and Controller

The local planner replans at a rate of 5 Hz. During each
cycle, it generates a fixed number of randomly-sampled
trajectories. Paths are represented by polynomial functions
of linear and angular velocity controls. We resample the
paths during each cycle in order to customize their selection
and tune performance. For long-range navigation, we have
found that restricting the set of controls to fixed velocity
and limited curvature (i.e. a car-like motion model) produces
smoother motion than the more general set of differential
drive actions. By contrast, when the vehicle is near the goal,
the full range of differential drive motions becomes crucial
to success. Rather than abruptly switching motion types, we
sample variably from two distributions on controls (car-like
and differential drive) according to goal proximity.

We test each predicted path for collision with obstacles and
compute a heuristic cost function on each trajectory. We then
pass the lowest-cost control to the controller for execution.

Since we are operating indoors on flat surfaces, the vehicle
model is sufficiently good that we can drive the Segway
open-loop for 1/5th sec at a time. Therefore, the controller’s
main job is merely to pass commanded velocity trajectories
to the robot. However, it also monitors HERB’s SICK ladar,
broadcasting at 37.5 Hz, for imminent collisions, which are
detected by simulating forward the last command beyond
the stopping distance. If the controller’s “virtual bumper”
predicts a collision, then the commanded linear velocity is
overridden with zero speed until the hazard clears. We put the
controller infrastructure in place to guarantee highly reactive
safe behavior, but the virtual bumper is rarely necessary
since the local and global planners will react to obstacle
movements at 5 Hz.

B. Global Planner and Heuristic Function

In the navigation planner, D* Lite plans in a map where
obstacles are expanded by the radius of the robot. The end
point of each local trajectory becomes the starting point for
the global path, and the sum of the two path costs (i.e. the
line integral of a path with a costmap) gives the total path

cost. D* is suitable for use in a real time environment. In
an 8-connected grid, our D* implementation expands cells
at a rate of 300,000 cells per second, consuming about 0.1
second amortized over a whole run.

The navigation planner’s vector of configuration features
from (1) consists of

fnav(τ) = [cang(τ(1)) cprox(τ) csim(τ)]T . (2)

Here, cang(q) returns the cost resulting from the difference
in heading between the terminal configuration in the local
path and the gradient of the global navigation function.
cprox(τ) denotes the cost reflecting the proximity of the path
culminating in q to any obstacle. Finally, csim(τ) reflects the
similarity between the commanded action ending at q and the
currently-executing action: given two paths of equal cost, we
prefer the path that minimizes acceleration.

C. Results

During manual tuning, we found that the feature weights
are not very sensitive, and so good performance is easy to
attain in practice. Following tuning, we tested the navigation
component extensively on HERB. The robot reliably planned
in real time, successfully navigating around an office en-
vironment with large and small spaces for a thirty-minute
stress test without getting stuck or striking an obstacle. The
robot accomplished this feat while continuously updating
its map to reflect movement of people and furniture in the
environment. The navigation planner is now in use on two
different projects employing HERB for other tasks.

IV. 3D ARM PLANNER

In this section, we move to the problem of applying a
hierarchical planner to a manipulator arm. We executed our
planned trajectories on a WAM arm from Barrett Technology,
Inc. with seven degrees of freedom. We utilized the Open-
RAVE [6] planning environment, which provides kinematics,
collision checking, and visualization capabilities.

A. Problem Description

As manipulation represents a huge scope for ongoing
research, we constrained the task to reaching from a start
configuration to any one of a set of goal poses of the end
effector. We exploit the affordance offered by the manipula-
tion problem, allowing the hand to approach a target object
from any free direction. In fact, we generalize even further by
allowing the planner to choose among multiple target objects.

The model we used for goal specification is a simplified
form of TSR (Task Space Region [3]) for specifying goal
neighborhoods. A TSR describes a range of valid end effector
poses. For example, a bottle may be grasped from any side
with a small translational tolerance. For this work we kept the
implementation simple by instead specifying a small set of
goal poses sampled from the TSR. From these goal poses, we
compute a corresponding set of inverse kinematic solutions
using OpenRAVE’s IKfast solver.

Fig. 3. Sampling multiple target goal poses around an object. For small
finger apertures, the goal state (ready to grasp the object) may be hard to
reach. Therefore, we pull back by a small amount and generate a penultimate
goal, from which the ultimate goal is reached without search.

Depending on the finger aperture, it may be difficult to
find any configuration from which the goal is visible in joint
space. This form of the narrow passage problem is easily
solvable because we know that pulling the hand straight
back from the target object is a valid motion (pending
necessary collision checks). Therefore, by designating a set
of penultimate goals set back a short distance from the true
goal, a solution becomes easier to find (Fig. 3).

B. Local Planner

The arm controller relies on a combination of model
predictive and PID control. We found this controller to be
sufficiently reliable that we could generate purely kinematic
plans and count on the controller to execute them accurately.

As with the Segway planner, we allow the arm to begin
moving toward the goal before the entire plan has been
generated. Planning iterations complete at a rate of about
5 Hz on average, just as on the Segway. Although paths are
planned much faster than they can be executed, we cannot
replace old commands with new ones as we did in the 2D
planner because we currently lack the capabilities both to
predict where the arm will be a fraction of a second hence
and to interrupt an executing command. Thus, we execute
all paths to their endpoints. Fig. 4 shows a visualization of
all the searched paths through a series of steps culminating
in reaching the goal.

During each replan step, the local planner samples a fixed
number of straight-line motions in joint space. These paths
comprise two categories. To produce a degree of greedy goal-
directedness, we generate several paths which move in a
straight line in joint space from the current configuration
to the goal configurations. For the sake of exploration, the
remaining motions are sampled from a random distribution.
We represent all paths as relative motions in joint space, thus
they are not particular to a given start configuration.

In the event that one of the goal-directed paths is collision-
free, the arm immediately moves to the goal and returns
success. However, such goal path collision tests often fail
because each target grasp is inherently in close proximity to

Fig. 4. An example plan to the goal, showing all considered trajectories.
The arm began in singularity at the top of the figure, proceeding down and
left toward the counter. It is shown near the final configuration, about to
grasp the juice bottle.

one of the target objects. In this case, we retain colliding
paths by truncating them short of the distance at which the
collision occurred (minus 20% of the total path length).

We generate the majority of paths by sampling relative
motions from a random distribution. Since there is no guar-
antee that these paths will be useful, we lazily collision test
only those paths which are candidates for traversal. If one of
the random paths has the lowest cost, then it will be tested for
collision with the environment, self-collision with the robot,
and exceeded joint limits. A path failing any of these tests
is eliminated from consideration (as with the 2D planner).

The path sampling distribution was the subject of some
engineering. We break the sampling process into two stages.
In stage one, we sample directions in C-space. Then in stage
two, we scale each path according to a distribution over
lengths that is a function of the remaining distance to the
nearest goal. This separation enables the planner to explore
widely at the beginning and then gradually move to fine-
tuning its position as the arm approaches a solution. We
achieve this behavior without fundamentally altering the path
generation algorithm at any point during planning.

We initially tried picking directions by uniformly sampling
points from an n-dimensional hypersphere. Such algorithms
are somewhat computationally expensive. To improve per-
formance, we next tried sampling from the circumscribing
n-hypercube. This fast operation gives a distribution biased
toward motions where C-space velocity is better distributed
throughout the joints of the arm (corresponding to the corners
of the hypercube). In practice, this distribution appears to
better explore the C-space in fewer steps, particularly in cases
where the arm starts from a singularity, as in Fig. 4

After generating a unit-length vector, we then scale it
based on a Gaussian random variable. Both the mean and
standard deviation of this distribution are equal to half the
C-space distance to the goal, di. We scale each candidate
path to a joint space length, si as

si ← trunc

(
N

(
di
2
,

(
di
2

)2
)
, [0,∞)

)
. (3)

We apply a heuristic scoring function to all paths and then
pass the lowest-cost path that survives the collision test to
the arm for execution.

C. Global Planner and Heuristic Function

As with the 2D planner, we employ D* Lite to generate
a navigation function in 3D workspace position for the end
effector, planning in a 26-connected grid. Note that we are
treating the hand as if it is floating in space; the resulting
D* paths do not reflect potential collisions between the
arm and environment. As a consequence of this trade-off,
performance is quite good. In 3D, D* performs over 100,000
expansions per second. Due to the compact workspace, D*
expends a mere 1/15th sec on a typical reaching problem.

The arm planner’s vector of configuration features from
(1) consists of

farm(τ) = [cdf (τ) ccs(τ(1)) cjl(τ(1))]T . (4)

The cost cdf (τ) comes from a squared distance field akin
to the signed distance field of [19]. This distance field maps
each workspace cell to the squared distance to the nearest
object in the world. The computation is efficient (0.06 sec
for 1 million voxels on a standard desktop processor). To
find a distance field cost, we discretize the arm lengthwise
and step through to find the point of nearest contact for the
arm. Conveniently, the arm approximates a constant-radius
cylinder, so we may readily compute the workspace distance,
dws(τ). The cost cdf (τ) is computed as

cdf (τ) =
1

dws(τ)2
. (5)

We measure the straight-line C-space distance to the
closest goal configuration, ccs(q). This term may appear re-
dundant since cgp(x) also measures distance to the goal, but
the two are complementary. ccs(q) is aware of kinematics but
ignorant of obstacles, while cgp(x) incorporates obstacles but
not kinematics. Since the optimal path is both kinematically
feasible and obstacle-free, we use a weighted sum of the two
terms. Inspiration for this approach comes from [7].

We compute cjl(q) based on the distance of each joint
to the nearest joint limit. It is desirable to keep the arm
away from joint limits both for manipulability and equipment
health. Given the distance dj of joint j to the nearest limit,
the joint limit cost is computed as

cjl(q) =
∑
j

1
d2
j

. (6)

D. Results

We tested the arm planner in a kitchen environment. The
task, pictured in Fig. 1, is to approach and grasp any one
of several bottles on the table. We compared the standalone
hierarchical arm planner, running on the real robot, against a
state of the art bidirectional RRT-based planner, CBiRRT [2].
CBiRRT is capable of accepting a list of TSRs describing
object grasps, hence it is solving a similar problem to our
own planner. In performing a comparison, we examined

TABLE I
COMPARISON WITH BIDIRECTIONAL RRT AVERAGED OVER 5 TRIALS.

Planner Average onset Average time Average
of motion (sec) to goal (sec) collision checks

Hierarchical 0.2 12.7 382
Planner
CBiRRT 2.4 14.7 1755

three planning metrics. First, we measured the delay between
planning onset and the start of motion. Second, we measured
the total task time from start of planning to reaching the goal.
Third, we looked at the total number of collision checks
each planner performed. Typically, collision checks strongly
influence planning time because collision checking is quite
expensive. Table I shows the results of this comparison.

V. DISCUSSION AND FUTURE WORK

This paper describes preliminary work on hierarchical
planning for mobile manipulation. We have reported results
on a real robot for the decoupled navigation and arm planning
problems. We also demonstrated the combined mobile ma-
nipulation planner in simulation (Fig. 1). A thorough exam-
ination of the coupled mobile manipulation planner running
on HERB remains a subject of future work. However, several
other areas of future work present opportunities.

Bidirectional planners have been popular for a decade,
particularly in the RRT community. In interleaved planning
and execution, bidirectionality has a different meaning since
the robot can only execute in the forward direction. How-
ever, we are already getting some benefit from bidirectional
planning, as we are sampling pullback goals (Section IV-A),
from which we know how to reach the ultimate goal. We
believe this idea can be generalized to discover regions of
space from which a goal state is most reachable.

At present, the hand approaches a goal position in any
arbitrary orientation, but we could sample in fewer dimen-
sions and constrain the palm or wrist to point towards a goal
or other nearby object. Then, as the hand moves closer to
its goal, we can use distally-mounted cameras to localize the
target, providing improved position estimates while planning.

Finally, we would like to explore the planner’s failure
modes in hopes of designing a global planner which succeeds
more often. Occasional failure is a fair price to pay for a
planner that works quickly and generates reasonable paths
under most circumstances. In addition to these benefits, the
hierarchical planner offers reactivity to dynamic obstacles
and nimble maneuvering in cluttered environments.

VI. ACKNOWLEDGMENTS

This work is sponsored by the Defense Advanced Re-
search Projects Agency. This work does not necessarily
reflect the position or the policy of the Government. No
official endorsement should be inferred.

This material is based upon work partially supported by
the National Science Foundation under Grant No. EEC-
0540865.

REFERENCES

[1] T. Allen, J. Underwood, and S. Scheding. A path planning system for
autonomous ground vehicles operating in unstructured dynamic envi-
ronments. In Proc. Australasian Conf. on Robotics and Automation,
2007.

[2] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation
planning on constraint manifolds. In Proc. IEEE Intl. Conf. on
Robotics and Automation, May 2009.

[3] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet Romea, and
J. Kuffner. Manipulation planning with workspace goal regions. In
Proc. IEEE Intl. Conf. on Robotics and Automation, May 2009.

[4] S. Candido, Y. Kim, and S. Hutchinson. An improved hierarchical
motion planner for humanoid robots. In Proc. IEEE-RAS Internaional
Conf. on Humanoid Robots, Daejeon, Korea, December 2008.

[5] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser,
J. Rosenblatt, D. Tseng, and V. Wong. Autonomous cross-country
navigation with the ALV. In Proc. IEEE Intl. Conf. Robotics and
Automation, Philadelphia, PA, 1988.

[6] R. Diankov and J. Kuffner. OpenRAVE: A planning architecture for
autonomous robotics. Technical report, Robotics Institute, Carnegie
Mellon University, July 2008. tech. report CMU-RI-TR-08-34.

[7] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for
autonomous driving in unknown environments. In Proc. Intl. Symp.
on Experimental Robotics, Athens, Greece, July 2008.

[8] D. Ferguson and A. Stentz. Field D*: An interpolation-based path
planner and replanner. In Proc. Intl. Symp. on Robotics Research,
October 2005.

[9] T. Howard, C. Green, D. Ferguson, and A. Kelly. State space sampling
of feasible motions for high-performance mobile robot navigation in
complex environments. J. Field Robotics, 25(1):325–345, June 2008.

[10] A. Kelly, A. Stentz, O. Amidi, M. W. Bode, D. Bradley, A. Diaz-
Calderon, M. Happold, H. Herman, R. Mandelbaum, T. Pilarski,
P. Rander, S. Thayer, N. M. Vallidis, and R. Warner. Toward reliable
off road autonomous vehicles operating in challenging environments.
Intl. J. Robotics Research, 25(1):449–483, May 2006.

[11] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Intl. J. Robotics Research, 5(1):90–98, 1986.

[12] R.A. Knepper and M.T. Mason. Empirical sampling of path sets for
local area motion planning. In Proc. Intl. Symp. of Experimental
Robotics, Athens, Greece, July 2008.

[13] R.A. Knepper and M.T. Mason. Path diversity is only part of the
problem. In Proc. IEEE Intl. Conf. on Robotics and Automation, Kobe,
Japan, May 2009.

[14] S. Koenig and M. Likhachev. D*Lite. In AAAI/IAAI, 2002.
[15] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning.

Intl. J. Robotics Research, 20(5):378, 2001.
[16] T. Lozano-Perez, J. Jones, E. Mazer, P. O’Donnell, W. Grimson,

P. Tournassoud, and A. Lanusse. Handey: A robot system that
recognizes, plans, and manipulates. In Proc. IEEE Intl. Conf. on
Robotics and Automation, volume 4, 1987.

[17] M. Pivtoraiko and A. Kelly. Differentially constrained motion replan-
ning using state lattices with graduated fidelity. In Proc. IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, September 2008.

[18] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source robot
operating system. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation Workshop on Open Source Robotics, Kobe, Japan, May
2009.

[19] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. CHOMP:
Gradient optimization techniques for efficient motion planning. In
Proc. IEEE Intl. Conf. on Robotics and Automation, May 2009.

[20] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R. Di-
ankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. VandeWeghe.
Herb: A home exploring robotic butler. Autonomous Robots, 28(1):5–
20, 2010.

[21] L.C. Wang, L.S. Yong, and M.H. Ang. Hybrid of global path
planning and local navigation implemented on a mobile robot in
indoor environment. In Proc. IEEE Intl. Symp. on Intelligent Control,
Vancouver, Canada, October 2002.

[22] Y. Yang and O. Brock. Elastic roadmaps: Globally task-consistent mo-
tion for autonomous mobile manipulation in dynamic environments.
In Proc. Robotics: Science and Systems, Philadelphia, USA, August
2006.

